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1 Introduction

AdS/CFT duality [1–4] remains an active field of research. Motivated by the isomorphism

between the isometry group of AdS5 and the conformal group in four dimensions, it was

conjectured by Maldacena that a string theory in AdS5 × S5 corresponds to a four dimen-

sional conformal field theory on the boundary. A prominent implication of the conjecture is

the correspondence between the type IIB superstring theory formulated on AdS5 ×S5 and

N = 4 supersymmetric Yang-Mills theory (SYM) with the isometry group O(6) of S5 dual

to the R-symmetriy group SU(4) of SYM. In particular, the supergravity limit of the string

theory corresponds to the leading behavior of SYM at large Nc and large ’t Hooft coupling

λ ≡ g2
YMNc =

L4

α′2 . (1.1)

with L the AdS radius and α′ the reciprocal of the string tension. This relation thereby

opens a new avenue to explore the strong coupling properties of SYM and sheds new lights

on strongly coupled QGP created in RHIC in spite of the difference between SYM and

QCD. Among notable successes on the RHIC phenomenology are the equation of state [5],

the viscosity ratio [6] and jet quenching parameters [7] as well as the energy loss [8].

The heavy quark potential (the potential energy between a heavy quark and its anti-

particle) of QCD is an important quantity that probes the confinement mechanism in the

hadronic phase and the meson melting in the plasma phase. It is extracted from the
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expectation of a Wilson loop operator, which can be measured on a lattice. In the case of

N = 4 SYM, the AdS/CFT duality relates the Wilson loop expectation value to the path

integral of the string-sigma action developed in ref. [9] for the worldsheet in the AdS5 ×S5

bulk spanned by the loop on the boundary. To the leading order of strong coupling, the

path integral is given by its classical limit, which is the minimum area of the world sheet.

From the Wilson loop of a pair of parallel lines, Maldacena extracted the potential function

in N = 4 SYM at zero temperature [10],

V (r) = − 4π2

Γ4
(

1
4

)

√
λ

r
≃ −0.2285

√
λ

r
(1.2)

with r the distance between the quark and the antiquark. Introducing a black hole in AdS

bulk, the potential at nonzero temperature as well as that for moving quarks have been

obtained by a number of authors [11, 12]. The field theoretic aspects of the potential (1.2)

and its finite temperature counterpart as well as their implications on RHIC physics were

discussed in ref. [12–14]. As was pointed out in ref. [10], the ”heavy quarks” underlying

the Wilson loop (1.2) in N = 4 SYM are actually heavy W bosons resulted in a Higgs

mechanism, which implement the fundamental representation of SU(Nc). Since the func-

tion (1.2) measures the force between two static fundamental color objects, we shall borrow

the terminology of QCD by naming it the heavy quark potential throughout this paper.

The strong coupling expansion of the SYM Wilson loop corresponds to the semi-

classical expansion of the string-sigma action and reads

V (r) = − 4π2

Γ4
(

1
4

)

√
λ

r

[

1 +
κ√
λ

+O

(

1

λ

)]

(1.3)

for the heavy quark potential. Computing the coefficient κ is the main subject of the

present paper. κ comes from the one loop effective action of the world sheet fluctuations

around its minimum area. This effective action has been obtained explicitly for some

simple Wilson loops including parallel lines [15, 16] and is expressed in terms of functional

determinants. Evaluating these determinants, we end up with the numerical value of κ,

κ ≃ −1.33460. (1.4)

The classical solution of the string-sigma model and the one loop effective action

underlying κ is briefly reviewed in the next section. There we also outline our strategy of

computation, which is along the line suggested in [16]. We parametrize the string world

sheet of the single Wilson line or parallel lines by conformal coordinates. Then a scaling

transformation is made that leaves the measure of the spectral problem of the functional

determinants trivial. Instead of solving the eigenvalue problem of the operators underlying

the determinants, we use the method employed in [17], which amounts to solve a set of

ordinary differential equations. Unlike the straight Wilson line and the circular Wilson loop

dealt with in [17], some of differential equations for the parallel lines are not analytically

tractable. The presence of various singularities makes numerical works highly nontrivial.

It is critical to isolate the singularities analytically in order to obtain a robust numerical
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result. So we did and the procedure is described in sections 3 and 4. The finite terms

of the scaling transformation of the determinants involved are examined in section 5 and

we find them adding up to zero. In section 6, we discuss our results along with few open

questions. Some technical details are explained in appendices. Throughout the paper, we

shall work with Euclidean signature with the AdS radius L set to one.

2 The one-loop effective action

Let us begin with a brief review of the classical limit that leads to the leading order

potential (1.2). The string-sigma action in this limit reduces to the Nambu-Goto action

SNG =
1

2πα′

∫

d2σ
√
g, (2.1)

with g the determinant of the induced metric on the string world sheet embedded in the

target space, i.e.

gαβ = Gµν
∂Xµ

∂σα

∂Xν

∂σβ
(2.2)

where Xµ and Gµν are the target space coordinates and the metric, and σα with (α = 0, 1)

parametrize the world sheet. The target space here is AdS5 × S5, whose metric may be

written as

ds2 =
1

z2
(dt2 + d~x2 + dz2) + dΩ2

5 (2.3)

with dΩ5 the element of the solid angle of S5. The physical 3-brane resides on the AdS

boundary z = 0. The string world sheets considered in this paper are all projected onto a

point of S5 in the classical limit.

The Wilson loop of a static heavy quark, denoted by C1, is a straight line winding up

the Euclidean time periodically at the AdS boundary. The corresponding world sheet in

the AdS bulk can be parametrized by t and z with ~x constant and extends all the way to

AdS horizon, z → ∞. The induced metric is that of AdS2, given by

ds2[C1] =
1

z2
(dt2 + dz2) (2.4)

with the scalar curvature

R = −2. (2.5)

Substituting the metric (2.4) into (2.1), we find the self-energy of the heavy quark

E[C1] =
1

T
SNG[C1] =

1

2πα′

∫ ∞

δ

dz

z2
. (2.6)

with T → ∞ the time period. Notice that we have pulled the physical brane slightly off the

boundary to the radial coordinate z = δ, as a regularization of the divergence pertaining

the lower limit of the integral (2.6).

The total energy of a pair of a heavy quark and a heavy antiquark separated by a

distance r, can be extracted from the Wilson loop consisting of two parallel lines each

winding up the Euclidean time at the boundary. This Wilson loop will be denoted by

– 3 –
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C2 and the world sheet in the bulk can be parametrized by t and z with x1 = ξ(z) and

x2, x3 = const.. The function ξ(z) is determined by substituting the induced metric

ds2[C2] =
1

z2
{dt2 +

[(

dξ

dz

)2

+ 1

]

dz2}, (2.7)

into the action (2.1) and minimizing it. We have

ξ = ±
∫ z0

z
dz′

z′2
√

z4
0 − z′4

. (2.8)

The maximum bulk extension of the world sheet, z0, is determined by the distance r

between the two lines at the boundary and we find that

z0 =
Γ2
(

1
4

)

(2π)
3
2

r . (2.9)

Substituting (2.8) into (2.7), we end up with the induced metric

ds2[C2] =
1

z2

(

dt2 +
z4
0

z4
0 − z4

dz2

)

, (2.10)

and the scalar curvature

R = −2

(

1 +
z4

z4
0

)

. (2.11)

The energy of the heavy quark pair is therefore given by,

E[C2] =
1

T
SNG[C2] =

1

πα′ z
2
0

∫ z0

δ

dz

z2
√

z4
0 − z4

, (2.12)

where the same regularization is applied to the lower limit of the integral.

The heavy quark potential is obtained by subtracting from (2.12) the self energy of

each quark(antiquark), i.e.

V = lim
δ→0+

(E[C2] − 2E[C1]) =
1

πα′

[
∫ z0

0
dz

(

z2
0

z2
√

z4
0 − z4

− 1

z2

)

− 1

z0

]

, (2.13)

and is divergence free. Carrying out the integral and substituting in the relations (2.9), we

derive (1.2).

The one loop effective action, W is obtained by expanding the string-sigma action of

ref. [9] to the quadratic order of the fluctuating coordinates around the minimum area and

carrying out the path integral [15, 16]. We have

W [C1] = − ln

[

det4(−iγα∇α + τ3)

det
3
2 (−∇2 + 2)det

5
2 (−∇2)

]

, (2.14)

for the static quark or antiquark and

W [C2] = − ln

[

det4(−iγα∇α + τ3)

det
1
2 (−∇2 + 4 +R) det(−∇2 + 2) det

5
2 (−∇2)

]

, (2.15)
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for the quark pair. The determinants in the denominators of (2.14) and (2.15) come from

the fluctuations of three transverse coordinates of the AdS sector and five coordinates

of S5 with the Laplacian given by the metric (2.4) or (2.10). The determinants in the

numerators come from the fermionic fluctuations, where we have introduced 2d gamma

matrices, γ0 = γ0 = τ2, γ1 = γ1 = τ1 and γ0γ1 = −iτ3 with τ1, τ2 and τ3 the three Pauli

matrices. In terms of the zweibein of the world sheet, ejα, we have γα ≡ ejαγj with j = 0, 1

and the covariant derivative

∇α =
∂

∂σα
+

1

8
[γi, γj ]ω

ij
α (2.16)

with ωij
α the spin connection corresponding to (2.4) or (2.10). The power ”4” comes from

eight 2d Majorana fermions each of which contributes a power 1/2. The one loop correction

to the heavy quark potential is then

∆V = lim
T→∞

1

T
lim

δ→0+
(W [C2] − 2W [C1]). (2.17)

The effective action W [C1] or W [C2] suffers from the usual logarithmic UV divergence,

which is proportional to the volume part of the Euler character

∫

z>δ
dtdz

√
gR (2.18)

of each world sheet with the same coefficient of proportionality [16]. It follows

from (2.4), (2.5), (2.10) and (2.11) that the integral (2.18) for the parallel lines is exactly

twice of that for the single line in the limit δ → 0. We have indeed that

∫

d2σ
√
gR = T

∫ ∞

δ

dz

z2
(−2) = −2T

δ
(2.19)

for the single line and

∫

d2σ
√
gR = 2T

∫ z0

δ
dz

z2
0

√

z4
0 − z4

(−2)

(

1 +
z4

z4
0

)

=
4T

z

√

1 − z4

z0

∣

∣

∣

∣

∣

∣

z0

δ

= −4T

δ
+O(δ3)

(2.20)

for the parallel lines. Therefore the UV divergence as well as the conformal anomaly cancel

in the combination of (2.17) in the limit δ → 0. As a contrast, the volume integral
∫

d2σ
√
g

of the parallel lines differs from twice of that of a straight line by a finite quantity in the

same limit. The UV divergence associated to the volume integral cancels within each

effective action of (2.14) and (2.15).1 Furthermore the limit δ → 0+ of the UV finite term

of (2.17) also exists as we shall see.

The world sheet of the parallel lines covers the coordinate patch (t, z) twice, which gives

rise to an artificial singularity of the Laplacian’s in (2.15) at z = z0 and adds difficulties

to the numerical works. To avoid the problem, we shall work with a conformal coordinate

patch (τ, σ) that the world sheet (2.10) covers only once. This is also suggested in [16].

1To see the cancellation for the single line case, we write the effective action (2.14) in the same form

as (2.15), keeping in mind that R = −2 here

– 5 –
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The new coordinates involve Jacobi elliptic functions [18, 19]of modulo k = 1√
2

and are

defined by

z = z0cnσ t =
z0√

2
τ (2.21)

In terms of the new coordinates, the metric (2.10) takes the form

ds2[C2] =
1

2cn2σ
(dτ2 + dσ2), (2.22)

and the scalar curvature (2.11) becomes

R = −2(1 + cn4σ). (2.23)

The nonzero component of the spin connection with cartesian indexes (0,1) referring to the

coordinate differentials dτ and dσ reads

ω01
τ = −ω10

τ =
snσdnσ

cnσ
. (2.24)

We shall use the the same time variable τ to describe the world sheet of the straight line

and rescale the z coordinate by z = z0√
2
ζ, leaving the conformal structure of (2.4) intact, i.e.

ds2[C1] =
1

ζ2
(dτ2 + dζ2). (2.25)

The spin connection corresponding to (2.24) is given by ω01
τ = −ω10

τ = −1
ζ . The range of

each coordinate variable is −T
2 ≤ τ ≤ T

2 , −K ≤ σ ≤ K and 0 ≤ ζ < ∞ where T =
√

2
z0
T

and K is the complete elliptic integral of the first kind,

K =
Γ2
(

1
4

)

4
√
π

≃ 1.8541. (2.26)

The operators underlying the determinants of (2.14) are given explicitly by

∆0[C1] ≡ −∇2 = −ζ2

(

∂2

∂τ2
+

∂2

∂ζ2

)

≡ ζ2∆̂0[C1] (2.27)

∆1[C1] ≡ −∇2 + 2 = −ζ2

(

∂2

∂τ2
+

∂2

∂ζ2

)

+ 2 ≡ ζ2∆̂1[C1] (2.28)

and

DF [C1] ≡ −iγα∇α + τ3 = −iζ
(

d

dζ
− 1

2ζ

)

τ1 − iζ
∂

∂τ
τ2 + τ3 ≡ ζD̂F [C1]. (2.29)

Similarly, the explicit expressions of the operators underlying the determinants

of (2.15) reads

∆0[C2] ≡ −∇2 = −2cn2σ

(

∂2

∂τ2
+

∂2

∂σ2

)

≡ 2cn2σ∆̂0[C2], (2.30)

∆1[C2] ≡ −∇2 + 2 = −2cn2σ

(

∂2

∂τ2
+

∂2

∂σ2

)

+ 2 ≡ 2cn2σ∆̂1[C2], (2.31)

∆2[C2] ≡ −∇2 + 4 +R = −2cn2σ

(

∂2

∂τ2
+

∂2

∂σ2

)

+ 2(1 − cn4σ) ≡ 2cn2σ∆̂2[C2], (2.32)
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and

DF [C2] ≡ −iγα∇α + τ3 = −i
√

2cnσ

(

∂

∂σ
+

snσdnσ

2cnσ

)

τ1 − i
√

2cnσ
∂

∂τ
τ2 + τ3

≡ cnσD̂F [C2]. (2.33)

The difference between the operators with hats and those without hats is the measure of

the spectral problem defined by them. While the measure is trivial with respect to the

operators with hats, changing the measure may introduce additional terms to the logarithm

of each determinant and their contribution will be examined in section V. For this reason,

the effective action is decomposed into two pieces, i.e. W [C1] = W1[C1] + W2[C1] for the

single Wilson line and W [C2] = W1[C2] +W2[C2] for the parallel lines. We define

W1[C1] = − ln
det4 D̂F [C1]

det
5
2 ∆̂0[C1] det

3
2 ∆̂1[C1]

, (2.34)

W2[C1] = −4 ln
|detDF [C1]|
|det D̂F [C1]|

+
5

2
ln

∆0[C1]

∆̂0[C1]
+

3

2
ln

∆1[C1]

∆̂1[C1]
, (2.35)

W1[C2] = − ln
det4 D̂F [C2]

det
5
2 ∆̂0[C2] det ∆̂1[C2] det

1
2 ∆̂2[C2]

, (2.36)

and

W2[C2] = −4 ln
|detDF [C2]|
|det D̂F [C2]|

+
5

2
ln

∆0[C2]

∆̂0[C2]
+ ln

∆1[C2]

∆̂1[C2]
+

1

2
ln

∆2[C2]

∆̂2[C2]
, (2.37)

Correspondingly, the coefficient κ defined in (1.3) is given by κ = κ1 + κ2 with

κ1 ≡ Γ2
(

1
4

)

√
πT lim

δ→0+
(W1[C2] − 2W1[C1]), (2.38)

and

κ2 ≡ Γ2
(

1
4

)

√
πT lim

δ→0+
(W2[C2] − 2W2[C1]), (2.39)

where we have used the relation between T and T and converted z0 to r via (2.9).

Making a Fourier transformation of the time variable τ , each functional determinant

of (2.14) and (2.15) is factorized as an infinite product of its Fourier components with each

Fourier component obtained by replacing the time derivative ∂
∂τ in ∆̂’s of (2.27)–(2.33)

by −iω with ω a frequency variable. Substituting the Fourier product of (2.14) and that

of (2.15) into (2.38), we find that

κ1 =
Γ2
(

1
4

)

√
π

∫ ∞

−∞

dω

2π
ln

R2(ω)

R2
1(ω)

=
Γ2
(

1
4

)

π
3
2

∫ ∞

0
dω ln

R2(ω)

R2
1(ω)

. (2.40)

The functions R1(ω) and R2(ω) are the Fourier components of the determinant ratios

of (2.14) and (2.15), given by

R1(ω) =
detD2

+(ω)detD2
−(ω)

detD
5
2
0 (ω)detD

3
2
1 (ω)

(2.41)
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and

R2(ω) =
detD2

+(ω)detD2
−(−ω)

detD
5
2
0 (ω)detD1(ω)detD

1
2
2 (ω)

, (2.42)

where the Fourier transformation of the operators ∆̂’s and D̂F ’s are given by

D0(ω) = D−(ω) = − d2

dζ2
+ ω2, (2.43)

D1(ω) = D+(ω) = − d2

dζ2
+ ω2 +

2

ζ2
, (2.44)

D0(ω) = − d2

dσ2
+ ω2, (2.45)

D1(ω) = − d2

dσ2
+ ω2 +

1

cn2σ
, (2.46)

D2(ω) = − d2

dσ2
+ ω2 +

1

cn2σ
− cn2σ, (2.47)

and

D±(ω) = − d2

dσ2
+

(

ω2 +
1 ∓

√
2snσdnσ

2cn2σ

)

. (2.48)

Let us explain the transformation we made on the fermionic determinants det D̂F [C1] and

det D̂F [C2]. Replacing the time derivatives in (2.29) and (2.33) by −iω, we find that

D̂F [C1] = −i
(

d

dζ
− 1

2ζ

)

τ1 − ωτ2 +
1

ζ
τ3 (2.49)

and

D̂F [C2] = −i
(

d

dσ
+

snσdnσ

2cnσ

)

τ1 − ωτ2 +
1√

2cnσ
τ3. (2.50)

It is straightforward to verify that

D̂2
F [C1] =

√

ζUdiag.(D+(ω),D−(ω))U † 1√
ζ

(2.51)

and

D̂2
F [C2] =

√
cnσUdiag.(D+(ω),D−(ω))U † 1√

cnσ
, (2.52)

where U is a 2 × 2 matrix that diagonalizes τ2, D±(ω) and D±(ω) are given above

by (2.43) (2.44) and (2.48). Therefore det4 D̂F [C1] = det2 D+(ω) det2 D−(ω) and

det4 D̂F [C2] = det2D+(ω) det2D−(ω).

The evaluation of the integral (2.40) will be discussed in the next two sections.

3 The evaluation of κ1 — Analytical part

Evaluating a functional determinant stemming from a semi-classical approximation to a

quantum mechanical system is an old subject of many research works. In one dimension a

– 8 –
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short cut was discovered by a number of authors [20, 21] that does not require a solution

to the spectrum problem involved. Consider two functional operators

Hα = − d2

dx2
+ Vα(x) (3.1)

with α = 1, 2 defined in the domain a ≤ x ≤ b where Vα(x) ≥ 0 under the Dirichlet

boundary condition, it was shown that the determinant ratio

detH2

detH1
=
f2(b|a)

f1(b|a)
(3.2)

where fα(x|a) is the solution of the homogeneous equation

Hαφ = 0, (3.3)

subject to the conditions fα(0|a) = 0 and f ′α(0|a) = 1. In terms of a pair of linearly

independent solutions of (3.3), (uα, vα),

fα(b|a) =
uα(a)vα(b) − uα(b)vα(a)

W [uα, vα]
. (3.4)

where the Wronskian W [uα, vα] is x-independent. With appropriate modification of the

conditions imposed on fα(x|a), the formula (3.2) can be tailored to cover other boundary

conditions. This method has been employed recently in [17] to calculate the one loop

effective action of the single line C1 or that of a circular Wilson loop. See [22] for a review

on other applications.

Coming back to the semi-classical correction of the heavy quark potential, the operator

Hα corresponds to one of the operators (2.43)–(2.48). We shall retain (u, v) for a pair of

linearly independent solutions of the homogeneous equation (3.3) with Hα given by an

operator pertaining to the single line and denote that of the corresponding equation of the

parallel lines by (η, ξ). Eq. (3.3) with Hα given by an operator of (2.43)–(2.45) can be

solved analytically and we may choose the following pairs of independent solutions

u0 = sinhωζ ≡ u0(ωζ) v0 = e−ωζ ≡ v0(ωζ), (3.5)

u1 = coshωζ − sinhωζ

ωζ
≡ u1(ωζ) v1 =

(

1 +
1

ωζ

)

e−ωζ ≡ v1(ωζ), (3.6)

u+ = u1(ωζ) v+ = v1(ωζ) (3.7)

u− = u0(ωζ) v− = v0(ωζ) (3.8)

and

η0 = sinhωσ ξ0 = coshωσ. (3.9)

with their Wronskian’s all given by

W [u0, v0] = W [η0, ξ0] = W [u1, v1] = W [u±, v±] = −ω, (3.10)
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The equations (3.3) with Hα given by (2.46), (2.47) and (2.48),

D1(ω)φ = −d
2φ

dσ2
+

(

ω2 +
1

cn2σ

)

φ = 0, (3.11)

D2(ω)φ = −d
2φ

dσ2
+

(

ω2 +
1

cn2σ
− cn2σ

)

φ = 0, (3.12)

and

D±(ω)φ = −d
2φ

dσ2
+

(

ω2 +
1 ∓

√
2snσdnσ

2cn2σ

)

φ = 0. (3.13)

do not admit analytical solutions for ω 6= 0. Eqs. (3.11) and (3.12) have σ = ±K as regular

points with the same pair of indexes (2,-1) there. The equation D±(ω)φ = 0 has a regular

point σ = ∓K with the indexes (2,-1) and σ = ±K is an ordinary point of it. We associate

η′s to the vanishing solution at σ = −K and ξ′s to the vanishing solution at σ = K with

the normalization conditions

lim
σ→−K

η1(σ)

ω2(σ +K)2
= lim

σ→−K

η2(σ)

ω2(σ +K)2
= lim

σ→−K

η+(σ)

ω2(σ +K)2
= 1 (3.14)

and

lim
σ→K

ξ1(σ)

ω2(K − σ)2
= lim

σ→K

ξ2(σ)

ω2(K − σ)2
= lim

σ→K

ξ−(σ)

ω2(K − σ)2
= 1. (3.15)

Furthermore, we require

η−(−K) = ξ+(K) = 0 (3.16)

and

η′−(−K) = −ξ′+(K) = ω (3.17)

with the prime the derivative with respect σ. On account of the eveness of D1(ω) and

D2(ω) with respect to σ, we have

ξ1,2(σ) = η1,2(−σ). (3.18)

It follows from the relation between D+(ω) and D−(ω) that

η−(σ) = ξ+(−σ) ξ−(σ) = η+(−σ) . (3.19)

Each differential equation of (3.11), (3.12) and (3.13) is of the form of an one dimensional

Schroedinger equation in a non negative potential at zero energy and does not admit a

bound state subject to the Dirichlet boundary condition. Therefore we expect that

η1,2(σ) =
C1,2(ω)

ω(K − σ)
+ . . . , (3.20)

η−(σ) =
C−(ω)

ω(K − σ)
+ . . . , (3.21)

as σ → K and

ξ1,2(σ) =
C1,2(ω)

ω(K + σ)
+ . . . , (3.22)

ξ+(σ) =
C+(ω)

ω(K + σ)
+ . . . . (3.23)
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as σ → −K. The coefficients of divergence, C1(ω), C2(ω) and C±(ω) are related to the

Wronskian’s via

Cj(ω) = −W [ηj, ξj ]

3ω
(3.24)

with j = 1, 2,±. We have, in addition,

η+(K) = −W [η+, ξ+]

ω
ξ−(−K) = −W [η−, ξ−]

ω
. (3.25)

It follows from the symmetry property (3.19) that

C+(ω) = C−(ω) ≡ C3(ω). (3.26)

For ω ≫ 1, the solutions η’s and ξ’s can be approximated by WKB method and we

find the asymptotic forms

C1(ω) =
3

2
e2Kω

(

1 − c

ω
+ . . .

)

, (3.27)

C2(ω) =
3

2
e2Kω

(

1 − 2c

ω
+ . . .

)

, (3.28)

and

C3(ω) =
1

2
e2Kω

(

1 − c

2ω
+ . . .

)

, (3.29)

where the constant

c =
2π

3
2

Γ2
(

1
4

) ≃ 0.84721 . (3.30)

The details of the derivation are shown in the appendix A. The small ω behavior can be

obtained by introducing an alternative set of solutions, normalized differently,

η̄1,2,+(σ) ≡ η1,2,+(σ)

ω2
, ξ̄1,2,−(σ) ≡ ξ1,2,−(σ)

ω2
(3.31)

and

η̄−(σ) ≡ η−(σ)

ω
ξ̄+(σ) ≡ ξ+(σ)

ω
. (3.32)

Defining the coefficients C̄’s by the diverging behavior

η̄1,2,−(σ) =
C̄1,2,−(ω)

K − σ
+ . . . , (3.33)

as σ → K and

ξ̄1,2,+(σ) =
C̄1,2,+(ω)

K + σ
+ . . . , (3.34)

as σ → −K, we find that C1,2(ω) = ω3C̄1,2(ω) and C3(ω) = C±(ω) = ω2C̄±(ω). Since

C̄1,2(0), C̄±(0) 6= 0 and are well defined (determined by eqs. (3.11)–(3.13) at ω = 0, see

appendix B for details) we have the small ω behavior,

C1(ω) ≃ 24π
3
2

Γ2
(

1
4

)ω3 ≃ 10.166557ω3 , (3.35)

C2(ω) ≃ 12π
3
2

Γ2
(

1
4

)ω3 ≃ 5.0832785ω3 , (3.36)
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and

C3(ω) ≃ 4ω2, (3.37)

In the regularized version, the physical brane, located at z = δ cut the world sheet of

the parallel lines at −K + ǫ and K − ǫ with

δ = z0cn(K − ǫ) ≃ z0√
2
ǫ. (3.38)

In another word, the domain of σ coordinate is [−K+ǫ,K−ǫ] under the regularization, and

we shall impose the Dirichlet boundary condition there. The corresponding domain of the

single line becomes ǫ < ζ < Z with Z a large ζ cutoff which will be set to infinity at the end.

Designate Uα(ω) to the quantity (3.4) of the single Wilson line and Uα(ω) to that of the

parallel lines with α = 0, 1, 2,± corresponding to the indexes of the operators (2.43)–(2.48),

we have2

R1(ω) =
U2

+(ω)U2
−(ω)

U
5
2
0 (ω)D

3
2
1 (ω)

=

(

1 +
1

ωǫ

)
1
2

. (3.39)

and

R2(ω) =
U2

+(ω)U2
−(ω)

U
5
2
0 (ω)U1(ω)U

1
2
2 (ω)

. (3.40)

The last step of (3.39) follows from the solutions (3.5)–(3.8), which imply that

U0(ω) = U−(ω) =
1

2ω
eω(Z−ǫ) (3.41)

and

U1(ω) = U+(ω) =
1

2ω

(

1 +
1

ωǫ

)

eω(Z−ǫ) (3.42)

as Z → ∞. It follows from (3.9) that

U0(ω) =
sinh 2(K − ǫ)ω

ω
. (3.43)

The symmetry (3.19) implies that U+(ω) = U−(ω).

To proceed, let us introduce ω0 that satisfies the inequality 1 ≪ ω0 ≪ 1
ǫ and divide

the integral (2.40) into two terms, κ1 = κ< + κ>, with

κ< =
Γ2
(

1
4

)

π
3
2

∫ ω0

0
dω ln

R2(ω)

R2
1(ω)

(3.44)

and

κ> =
Γ2
(

1
4

)

π
3
2

∫ ∞

ω0

dω ln
R2(ω)

R2
1(ω)

. (3.45)

2The difference between our result with that in [17] for a straight Wilson line may be attributed to

the different ways of scaling the determinant of fermionic fluctuations, i.e. det
“

1
ζ
DF [C1]

”2

here versus

det
“

1
ζ2 D2

F [C1]
”

in [17]. We have verified their result by using their scaling formula. The function ρ(ω) of

eq. (3.50), however, remains the same for the different ways of scaling.
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For the integrand of (3.44), we may approximate

R1(ω) ≃ 1√
ωǫ
, (3.46)

U1,2(ω) ≃ C1,2(ω)

3ω3ǫ2
(3.47)

and

U±(ω) ≃ C3(ω)

ω2ǫ
. (3.48)

Only one term of the numerator of (3.4) contributes to each case of (3.47) and (3.48) and

the other term is suppressed by a power of ǫ. Together with (3.43), we obtain that

κ< ≃ Γ2
(

1
4

)

π
3
2

∫ ω0

0
dω ln ρ(ω) (3.49)

with

ρ(ω) =
3

3
2C4

3 (ω)

C1(ω)C
1
2
2 (ω) sinh

5
2 2Kω

(3.50)

and the approximation becomes exact in the limit ǫ → 0. It follows from the asymptotic

behaviors (3.27), (3.28) and (3.29) that

ln ρ(ω) = o

(

1

ω

)

(3.51)

for ω ≫ 1 and

ρ(ω) ≃ 64
√

2

πΓ2
(

1
4

)ω ≃ 2.19171ω (3.52)

as ω → 0. The very fact that the integration of κ< converges in the limit ω0 → ∞ indicate

that κ> vanishes under the same limit. This is indeed the case. For the integrand of κ>,

the approximations (3.46)–(3.48) cease to be valid because ωǫ may be of the order one or

larger. Treating ǫ as a variable and making use of the expansion formula

cn(−K + ǫ) = cn(K − ǫ) =
ǫ√
2

(

1 − ǫ4

40
+

ǫ8

1290
+ . . .

)

(3.53)

and the identity

sn2σdn2σ =
1

2
(1 − cn4σ) (3.54)

we find the approximations of D1(ω), D2(ω) and D±(ω) in terms of D0(ω) and D1(ω) of

the single Wilson line, i. e.

D1(ω)|σ=±(ǫ−K) ≃ D2(ω)|σ=±(ǫ−K) ≃ D±(ω)|σ=±(ǫ−K) ≃ D1(ω)|ζ=ǫ (3.55)

and

D±(ω)|σ=±(K−ǫ) ≃ D0(ω)|ζ=ǫ . (3.56)
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The correction is of the order ǫ4 which remains small throughout the integration domain

of κ>. The WKB analysis of the appendix A yields

η1,2(K − ǫ) = ξ1,2(−K + ǫ) = C1,2(ω)v1(ωǫ)

[

1 + o

(

1

ω

)]

, (3.57)

η+(K − ǫ) = ξ−(−K + ǫ) = 3C3(ω)v0(ωǫ)

[

1 + o

(

1

ω

)]

(3.58)

and

η−(K − ǫ) = ξ+(−K + ǫ) = C3(ω)v1(ωǫ)

[

1 + o

(

1

ω

)]

. (3.59)

with C’s given by the first two terms of their asymptotic expansions (3.27)–(3.29). Sub-

stituting eqs. (3.57)–(3.59) into the expression of Uα(ω), we observe that only one term of

the numerator of (3.4) dominates exponentially. It follows from (3.39) and (3.40) that

R2(ω) = R2
1(ω)

[

1 + o

(

1

ω

)]

(3.60)

where we have utilized the relations in (3.24) and the explicit forms of the functions v’s

in (3.6)–(3.8). Consequently limω0→∞ κ> = 0 and we arrive at the integral representation

of the coefficient κ1,

κ1 =
Γ2
(

1
4

)

π
3
2

∫ ∞

0
dω ln ρ(ω). (3.61)

with ρ(ω) given by (3.50). This integral is well defined and will be evaluated numerically

in the next section.

4 The evaluation of κ1 — Numerical part

As was explained in section II, the algebraic coordinate z will introduce an artificial sin-

gularity to the differential equations underlying the determinant ratio of the parallel lines.

The conformal metric (2.22) we work with involves elliptic functions. This is not a big

deal for numerical analysis. The elliptic functions can be expressed as the ratios of theta

functions [18, 19],

snσ =
ϑ3ϑ1

(

σ
2K

)

ϑ2ϑ4

(

σ
2K

) , (4.1)

cnσ =
ϑ4ϑ2

(

σ
2K

)

ϑ2ϑ4

(

σ
2K

) , (4.2)

and

dnσ =
ϑ4ϑ3

(

σ
2K

)

ϑ3ϑ4

(

σ
2K

) , (4.3)
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where

ϑ1(z) = 2
∞
∑

n=0

(−)nq(n+ 1
2)

2

sin(2n+ 1)πz (4.4)

ϑ2(z) = 2

∞
∑

n=0

q(n+ 1
2)

2

cos(2n+ 1)πz, (4.5)

ϑ3(z) = 1 + 2
∞
∑

n=1

qn2
cos 2nπz, (4.6)

and

ϑ4(z) = 1 + 2
∞
∑

n=1

(−)nqn2
cos 2nπz, (4.7)

with ϑi ≡ ϑi(0) for i = 1, 2, 3, 4. The quantity ϑ3 is related to the complete elliptic

integral of the first kind via K(k) = π
2ϑ

2
3 with k the modulo. The expansion parameter

q = e−π ≃ 0.0432139 for our case, k = 1√
2
, so the series (4.4)–(4.7) converge extremely

fast. Also in this case, ϑ2 = ϑ4 = 2−
1
4ϑ3. The Schroedinger like equations (3.11)–(3.13) are

solved with the fourth order Runge-Kutta method under the boundary conditions (3.14)–

(3.17). For eqs. (3.11) and (3.12), we take advantage of the symmetry property (3.18) and

evaluate the Wronskian by the formula

W1,2(ω) = −2η1,2(0)η′1,2(0) (4.8)

where the prime denotes the derivative with respect to σ. The coefficients C1,2(ω) follows

from (3.24). For eq. (3.13) with the upper sign, we develop η+(σ) from σ ≃ −K and ξ+(σ)

from σ = K, evaluate their Wronskian at σ = 0 and calculate the coefficient C3(ω) from

eq. (3.24). An alternative way is to run the solution η+(σ) all the way to K and calculate

the Wronskian by eq. (3.25). To avoid the rapid changes of the potential function near

the singularity σ = −K, we start with an analytical approximation of η1,2(σ) and η+(σ)

at σ = −K + δ with δ ≪ 1 and then run the Runge-Kutta iteration for σ > −K + δ.

Notice that δ here is not the regularization parameter introduced below (2.6) and on l.h.s.

of (3.38)).On writing x = ωδ, we find the approximate solutions

η1,2(−K + δ) = 3{u1(x) + c1,2[p(x)u1(x) + q(x)v1(x)]} (4.9)

and

η+(−K + δ) = 3{u1(x) + c+[p(x)u1(x) + q(x)v1(x)]} (4.10)

where u1 and v1 are given by (3.6),

p(x) =
1

20ω4

[

1

3
x3 − x+

5

4
−
(

1

2
x2 +

3

2
x+

5

4

)

e−2x

]

(4.11)

and

q(x) = − 1

20ω4

[

1

3
x3 − x+

1

2

(

x2 +
5

2

)

sinh 2x− 3

2
x cosh 2x

]

. (4.12)
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The coefficients c1 = 1, c2 = −4 and c+ = −1
4 . No such a precaution is necessary for the

solution ξ+(σ) and the Runge-Kutta can start right at the point σ = K.The numerical

results of C1(ω), C2(ω) and C3(ω) are displayed in figure 1, where we have introduced

Ĉ1(ω) ≡ 2

3
C1(ω)e−2Kω = 1 − c

ω
+ . . . , (4.13)

Ĉ2(ω) ≡ 2

3
C2(ω)e−2Kω = 1 − 2c

ω
+ . . . , (4.14)

and

Ĉ3(ω) ≡ 2C3(ω)e−2Kω = 1 − c

2ω
+ . . . (4.15)

with the last step of each equation following from the asymptotic expansions (3.27), (3.28)

and (3.29). The comparison of the numerical results with the asymptotic expan-

sions (4.13), (4.14) and (4.15) is shown in the table 1 and that with the small ω be-

haviors (3.35), (3.36) and (3.37) is shown in the table 2. The agreement is excellent. To

gain more confidence on the numerical solutions of the differential equations (3.11), (3.12)

and (3.13) for intermediate ω, we checked the numerical code against a soluble model in

which we base the covariant derivatives in (2.15) on the following AdS2 metric

ds2 =
1

cos2 σ
(dτ2 + dσ2) (4.16)

with −π
2 ≤ σ ≤ π

2 . The differential equations corresponding to (3.11), (3.12) and (3.13)

can be reduced to hypergeometric equations and the exact forms of the C-coefficients of

the soluble model are derived in the appendix C. They read

Csol.
1 (ω) = Csol.

2 (ω) =
3ω2

ω2 + 1
sinhπω (4.17)

and

Csol.
3 (ω) =

4ω2

4ω2 + 1
coshπω. (4.18)

We have

ln ρsol.(ω) ≡ ln
3

3
2Csol.

3 (ω)4

Csol.
1 (ω)Csol.

2 (ω)
1
2 sinh

5
2 πω

=
1

2ω2
+O

(

1

ω4

)

(4.19)

and
∫ ∞

0
dω ln ρsol.(ω) = 0. (4.20)

In figure 2, we plot the function ρ(ω) of (3.50) along with that of the soluble model

ρsol.(ω). The small ω behavior of the former can be fitted to a polynomial

ρ(ω) = 2.19171ω − 3.4445ω3 + 6.21735ω5 − 10.8863ω7 + 17.5978ω9, (4.21)

consistent with (3.52). For large ω, the products ω2ρ(ω) and ω2ρsol.(ω) are tabulated in

table 3 with both determined numerically. Both figure 2 and table 3 suggest that ρ(ω) falls

off faster than ρsol.(ω) for large ω. An analytical demonstration requires extending the

WKB approximation in appendix A to higher orders and will be rather tedious. Here we
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ω 10 100 200 300 400 500 600 700

ω(1− Ĉ1(ω)) 0.848635 0.847228 0.847217 0.847215 0.847214 0.847214 0.847214 0.847213
ω
2
(1 − Ĉ2(ω)) 0.844365 0.847182 0.847205 0.847210 0.847211 0.847212 0.847212 0.847212

2ω(1 − Ĉ3(ω)) 0.846503 0.847205 0.847211 0.847212 0.847213 0.847213 0.847213 0.847213

Table 1. The large ω behaviors of the numerically generated Ĉ1(ω), Ĉ2(ω) and Ĉ3(ω)

ω 0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01
C1(ω)

ω3 10.16655701 10.16655704 10.16655711 10.16655950 10.16656698 10.16680621 10.16755383
C2(ω)

ω3 5.08327851 5.08327852 5.08327857 5.08328004 5.08328465 5.08343202 5.08389259
C3(ω)

ω2 4.00000000 4.00000001 4.00000006 4.00000143 4.00000574 4.00014355 4.00057424

Table 2. The small ω behaviors of the numerically generated C1(ω), C2(ω) and C3(ω)

ω 10 100 200 300 400 500 600 700

ω2 ln ρ(ω) -0.000052 -0.000001 -0.000002 -0.000003 -0.000004 -0.000004 -0.000005 -0.000005

ω2 ln ρsol.(ω) 0.493798 0.499938 0.499984 0.499993 0.499996 0.499997 0.499998 0.499999

Table 3. The large ω behaviors of ρ(ω) and ρsol.(ω).

merely post our observation without offering a rigorous proof. The self-adaptive Simpson

integration of ln ρ(ω) yields

∫ ∞

0
dω ln ρ(ω) ≃ −0.56534, (4.22)

which, upon substitution into (3.61) leads to

κ1 = −1.33460. (4.23)

The relative error in the numerical valuation of the elliptic functions is about 10−15

and that of the coefficients Csol.(ω)’s extracted from our Runge-Kutta iteration is found

below 10−11. Notice that the near singularity expansion of the trigonometric functions

pertaining to the soluble model goes by the second power of ǫ, while the same type of

expansion of the elliptic functions pertaining to the parallel lines, (3.53) and (3.54), goes

by the fourth power of ǫ. Therefore the approximations (4.9)–(4.12) should work better

for the parallel lines. Likewise is the numerical integration (4.22), the integrand of which

vanishes faster than that of the soluble model at large ω. For the soluble model, we found

2.39×10−8 in contrast to the exact value zero of (4.20). Consequently, the accuracy of our

numerical algorithm should be amply sufficient for the six significant figures of the κ value

reported in this paper.

5 Determination of κ2

To determine κ2, we quote two formula of ref. [16], one for a bosonic determinant and the

other for a fermionic determinant. Consider a general 2d metric

ds2 = gαβdσ
αdσβ (5.1)
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Figure 1. the top curve represents Ĉ3(ω), the middle one represents Ĉ1(ω), the bottom one

represents Ĉ2(ω).

Figure 2. the left curve represents ρ(ω), while the right one represents ρsol.(ω).

with the scalar curvature R. Define the functional operator ∆M ≡ M−1(−∇2 + X) with

∇2 the Laplacian with respect to the metric (5.1) and (M , X) functions of coordinates.

Varying M amounts to a conformal transformation of the metric (5.1) and associated

anomaly contributes a nontrivial finite term to the variation of the functional determinant

of ∆M . We have

(

ln
det ∆M )

det ∆1

)

fin.

= − 1

4π

∫

d2σ
√
g

[

lnM

(

1

6
R−X

)

+
1

12
gαβ ∂ lnM

∂σα

∂ lnM

∂σβ

]

+boundary terms, (5.2)

Since we are always taking the difference between the parallel Wilson lines and the two

single Wilson lines, the boundary terms cancel and we may integrate by part freely. For a

Dirac operator with respect to the metric (5.1), γα∇α, we define

∆F
K ≡ −(K−1γα∇α)2 + K−2Y (5.3)
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with K and Y functions of coordinates. The measure transformation formula corresponding

to (5.2) reads.

(

ln
det ∆F

K)

det ∆F
1

)

fin.

=
1

2π

∫

d2σ
√
g

[

lnK
(

1

6
R+ 2Y

)

+
1

6
gαβ ∂ lnK

∂σα

∂ lnK
∂σβ

]

+boundary terms, (5.4)

where we have multiplied the integral in [16] by two, taking into account that ∆F
K here is

a 2 × 2 matrix in the spinor space.

Coming to the determinants we are interested in, metric (2.25)and metric (2.22) are

all conformal with

gαβ = e−2χδαβ (5.5)

and the scalar curvature

R = 2e2χδαβ ∂2χ

∂σα∂σβ
. (5.6)

We have (σ0, σ1) = (τ, ζ) and χ = ln ζ for the single line, and (σ0, σ1) = (τ, σ) and

χ = ln(
√

2cnσ) for the parallel lines. With the measure scaling functions M = e2χ and

K = eχ, those functional operators of (2.27)–(2.33) without hats corresponds to ∆1 and

∆F
1 of eqs. (5.2) and (5.4) and that with hats to ∆M and ∆F

K there. The ”mass square” X

of (5.2) equals to zero for ∆0[C1] and ∆0[C2], equals to 2 for ∆1[C1] and ∆1[C2] and equals

to 4 +R for ∆2[C2]. The ”mass” Y of (5.4) equals to one for all fermionic determinants. It

follows from (5.2) that

(

ln
det ∆0[C1]

det ∆̂0[C1]

)

fin.

= − 1

12π

∫

C1

d2σδαβ ∂χ

∂σα

∂χ

∂σβ
+ boundary terms, (5.7)

(

ln
det ∆0[C2]

det ∆̂0[C2]

)

fin.

= − 1

12π

∫

C2

d2σδαβ ∂χ

∂σα

∂χ

∂σβ
+ boundary terms,

(

ln
det ∆1[C1]

det ∆̂1[C1]

)

fin.

= − 1

12π

∫

C1

d2σδαβ ∂χ

∂σα

∂χ

∂σβ
− 1

π

∫

C1

d2σe−2χχ+ boundary terms,

(

ln
det ∆1[C2]

det ∆̂1[C2]

)

fin.

= − 1

12π

∫

C2

d2σδαβ ∂χ

∂σα

∂χ

∂σβ
− 1

π

∫

C2

d2σe−2χχ+ boundary terms,

and
(

ln
det ∆2[C2]

det ∆̂2[C2]

)

fin.

=
11

12π

∫

C2

d2σδαβ ∂χ

∂σα

∂χ

∂σβ
− 2

π

∫

C2

d2σe−2χχ+boundary terms. (5.8)

where the subscript of the integration sign indicates the world sheet the integration extends

to. Similarly, the formula (5.4) implies that

(

ln
|detDF [C1]|
|det D̂F [C1]|

)

fin.

=
1

24π

∫

C1

d2σδαβ ∂χ

∂σα

∂χ

∂σβ
− 1

2π

∫

C1

d2σe−2χχ+ boundary terms

(5.9)

– 19 –



J
H
E
P
0
8
(
2
0
0
9
)
0
0
4

and

(

ln
|detDF [C2]|
|det D̂F [C2]|

)

fin.

=
1

24π

∫

C2

d2σδαβ ∂χ

∂σα

∂χ

∂σβ
− 1

2π

∫

C2

d2σe−2χχ+ boundary terms.

(5.10)

Substituting into (2.35) and (2.37) for the single line and the parallel lines, we find their

contributions add up to zero in each case i.e. W2[C1] = W2[C2] = 0. Consequently,

κ2 = 0. (5.11)

This, together with (4.23) leads to our final result (1.4).

6 Concluding remarks

As AdS/CFT has become an important reference to understand the observation of the

strongly interacting quark-gluon plasma created by heavy ion collisions, it is critical to

asses the robustness of the leading order prediction by exploring the next order correction

in the expansion according to the inverse powers of the large ’t Hooft coupling λ = Ncg
2
YM.

The subleading terms of the expansion have been addressed in the literature in the context

of the equation of state [23] and the shear viscosity [24, 25]. This type of corrections comes

from the α′3 correction of the target space metric [26]. Its contribution is of the order

O(λ−3/2) relative to the leading order in the N = 4 SYM and is present only at nonzero

temperature. In case of the expectation value of a Wilson loop operator, however, the

dominant correction stems from the fluctuation of the world sheet around its minimum

area and is suppressed only by O(λ−1/2) relative to the leading order. It shows up at all

temperatures and is more difficult to compute. The only attempts made in the literature

in this regard include the strong coupling expansion of a single line, a circular loop and

a spinning line at zero temperature [15–17, 29]. These Wilson loops, though theoretically

important, do not carry direct phenomenological implications.

In this work, we have extended the method in [17] to the fluctuations of the world sheet

dual to a pair of parallel Wilson lines and have derived the next term of the strong coupling

expansion of the heavy quark-antiquark potential in N = 4 SYM at zero temperature. We

start with the determinant ratio for a single Wilson line and that for parallel lines in the

static gauge, in which the fluctuations come from eight transverse bosonic coordinates and

eight 2d Majorana fermions. Then we scaled the operators underlying the determinants,

leaving a trivial measure for the associated spectral problem. The subleading term of

the heavy quark potential is extracted from the combination (2.17), which consists of the

spectral and the measure parts. A robust numerical result of the former is obtained and

the contributions from measure change of each determinant cancel. We have,

V (r) = −a(λ)

r
(6.1)
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with

a(λ) =



















4π2

Γ4
(

1
4

)

√
λ

r

[

1 − 1.33460√
λ

+O

(

1

λ

)]

, for λ≫ 1

λ

4πr

[

1 − λ

2π2

(

ln
2π

λ
− γE + 1

)

+O(λ2)

]

, for λ≪ 1

(6.2)

where the weak coupling expansion obtained in [13, 27] from field theory is also included

for completeness. The authors of [13] also worked out the strong coupling expansion under

the ladder approximation in field theory,

Vladder(r) = −
√
λ

πr

(

1 − π√
λ

)

. (6.3)

It is interesting to notice that our subleading term is of the same sign as theirs but the

magnitude relative to the leading order is smaller in our result. In view of the range of the

’t Hooft coupling which was used for the RHIC phenomenology,

5.5 < λ < 6π (6.4)

the correction to the leading order of the strong coupling may be significant in magnitude.

One may define an effective coupling

√
λ′ =

√
λ− 1.33460 (6.5)

If λ of (6.4) is replaced by λ′, the range of the ’t Hooft coupling is shifted to

13.54 < λ < 32.22 (6.6)

At a nonzero temperature T , however, the order O(λ−1/2) is not merely a redefinition of

the coupling and the strong coupling expansion of the heavy quark potential becomes

V (r) ≃ − 4π2

Γ4
(

1
4

)

√
λ

r

[

g0(rT ) − 1.33460g1(rT )√
λ

+O

(

1

λ

)]

(6.7)

with g0(x) and g1(x) two functions satisfying the conditions g0(0) = g1(0) = 1. The

function g0(x) have been determined by the minimum area of the world sheet in the

Schwarzschild-AdS5×S5 target space [11]

ds2 =
1

z2

(

f(z)dt2 + d~x2 +
1

f(z)
dz2

)

+ dΩ2
5 (6.8)

with f(z) = 1−π4T 4z4 and t the Euclidean time. The one loop effective action underlying

the function g1(x) has been developed in [28] and the methodology employed in this work

can be readily generalized there.

While simple in practice, the static gauge we worked with suffers a problem. Though

the combination (2.17) gives rise to a finite result, neither the UV divergence nor the

conformal anomaly of each term on r.h.s. of (2.17) vanishes. A less problematic gauge is

the conformal gauge, in which the world sheet metric is not set to the induced metric at
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the beginning. One has to include the determinant of the longitudinal fluctuations and

that of the ghost and an appropriate measure of the path integral. The contributions from

the transverse bosons and fermions obtained in this paper will remain there, but other

contributions including the measure change may be subtle to collect. It is important to

carry out the parallel analysis in the conformal gauge to ascertain that our result in this

paper is complete. Another alternative is the canonical quantization method employed

in [29]. We hope to report our progress in this direction in near future.
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A The WKB analysis

To extract the large ω behavior of the coefficients C1(ω), C2(ω) and C3(ω), we introduce

x ≡ ω(K+σ) and y ≡ ω(K−σ). For σ+K ≪ 1(K−σ ≪ 1), the solutions of the differential

equations can be approximated by that of the equations for the single line, which extends

to x ≫ 1(y ≫ 1) for large ω. The WKB approximation applies for x ≫ 1 and y ≫ 1. In

case of eq. (3.13) with upper(lower) sign, the WKB solution can be extended all the way to

the point σ = K(σ = −K) and the requirement y ≫ 1(x≫ 1) may be relaxed. We match

the single line solution and the WKB ones in the regions where both approximations apply.

Consider the equation (3.11) first. We start with the approximate solution

near σ = −K
η1 ≃ 3u1(x) (A.1)

with σ+K ≪ 1, where the coefficient 3 follows from the requirement (3.14). The asymptotic

form for x≫ 1 reads

η1 ≃ 3

2
ex
(

1 − 1

x

)

≃ 3

2
ex−

1
x . (A.2)

The WKB solution to be matched is given by

η1 ≃ exp

(

∫ σ

dσ′
√

ω2 +
1

cn2σ′

)

. (A.3)

Expanding the square root for large ω and using the derivative formula

d

dσ

snσdnσ

cnσ
=

1

2

(

1

cn2σ
+ cn2σ

)

(A.4)
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we find that

η1 ≃ A exp

(

ωσ +
1

2ω

∫ σ

−K

dσ′

cn2σ′

)

≃ A

(

ωσ +
snσdnσ

ωcnσ
− 1

2ω

∫ σ

−K
dσ′cn2σ′

)

(A.5)

with A a constant to be determined. In the left matching region where x≫ 1 and σ+K ≪
1, the approximations

sn(σ)dn(σ)

cn(σ)
≃ − 1

K + σ
(A.6)

and
∫ −σ
−K dσ′cn2σ′ ≃ 0 yield the coefficient A = 3

2e
Kω. In the right matching region where

K − σ ≪ 1 and y ≫ 1, the WKB solution (A.5) becomes

η1 ≃ 3

2
e2Kω− c

ω e
−y+ 1

y , (A.7)

where we have used the approximation

sn(σ)dn(σ)

cn(σ)
≃ 1

K − σ
(A.8)

there and the constant

c =
1

2

∫ K

−K
dσcn2σ =

√
2

∫ 1

0
dx

x2

√
1 − x4

=
2π

3
2

Γ2
(

1
4

) . (A.9)

Comparing with the expression of (3.6), we obtain that

η1 ≃ 3

2
e2Kω− c

ω v1(y). (A.10)

The asymptotic behavior of (3.27) is extracted in the limit y → 0 and the relation (3.57)

for η1 and ξ1 follows.

The equation (3.12) can be treated similarly. We start with the same expression

of (A.1) for η2(σ) near σ = −K but replace the WKB solution (A.3) by

η2 ≃ exp

(

∫ σ

dσ′
√

ω2 +
1

cn2σ′
− cn2σ′

)

(A.11)

Eqs. (A.5) and (A.7) become

η2 ≃ A exp

(

ωσ +
1

2ω

∫ σ

−K

dσ′

cn2σ′
− 1

2ω

∫ σ

−K
dσ′cn2σ′

)

≃ A exp

(

ωσ +
snσdnσ

cnσ
− 1

ω

∫ σ

−K
dσ′cn2σ′

)

(A.12)

with the same A and

η2(σ) ≃ 3

2
e2Kω− 2c

ω e−y+ 1
y (A.13)

for y ≫ 1 and K − σ ≪ 1. The asymptotic behavior (3.28) and the relation (3.57) for

(η2, ξ2) are extracted then.
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Coming to eq. (3.13), the single line solution (A.1) remains approximating and we have

η+ ≃ 3u1(x) (A.14)

for σ +K ≪ 1. The WKB solution it matches with for x≫ 1 reads

η+ ≃ exp

(

∫ σ

dσ′

√

ω2 +
1

2cn2σ′
− snσ′dnσ′√

2cn2σ′

)

≃ 3

2
exp

(

Kω + ωσ +
1

4ω

∫ σ

dσ′
1 −

√
2snσ′dnσ′

cn2σ′

)

≃ 3

2
exp

(

Kω + ωσ +
1

2
√

2ω

√
2snσdnσ − 1

cnσ
− 1

4ω

∫ σ

−K
dσ′cn2σ′

)

(A.15)

and works all the way to the point σ = K. Near that point, we find

η+ ≃ 3

2
e2Kω− c

2ω
−y (A.16)

Eqs. (3.29) and (3.58) follow from the form of v0(y), (3.24) and (3.25). The relation (3.59)

is obtained starting with the WKB solution

ξ+ ≃ sinh

(

∫ K

σ
dσ′

√

ω2 +
1

2cn2σ′
− snσ′dnσ′√

2cn2σ′

)

(A.17)

and matching it to the approximate solution v1(x) for K + σ ≪ 1 and x≫ 1.

B The solutions at ω = 0

The differential equation (3.11) at ω = 0 can be converted to a hypergeometric equation

by the transformation

x = cn4σ φ(σ) =
√
xf(x), (B.1)

i.e.

x(1 − x)
d2f

dx2
+

(

7

4
− 9

4
x

)

df

dx
− 3

8
f = 0. (B.2)

We have

η̄1(σ) = 2cn2σF

(

1

2
,
3

4
;

7

4
; cn4σ

)

(B.3)

and ξ̄1(σ) = η̄1(−σ). It follows from the formula

d

dz
F (a, b; c; z) =

ab

c
F (a+ 1, b+ 1; c + 1; z), (B.4)

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c − b)
(B.5)

for Re(c− a− b) > 0 and

F (a, b; c; 1 − ǫ) =
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
ǫc−a−b + . . . (B.6)
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for Re(c− a− b) < 0 and ǫ > 0 that the Wronskian

W [η̄1, ξ̄1] = −2 lim
ǫ→0+

η̄1(−ǫ)η̄′1(−ǫ)

= − 48

7
√

2

Γ
(

7
4

)

Γ
(

1
2

)

Γ
(

5
4

)

Γ(1)

Γ
(

11
4

)

Γ
(

1
2

)

Γ
(

3
2

)

Γ
(

7
4

)

= − 72π
3
2

Γ2
(

1
4

) (B.7)

Divided by -3, we derive (3.35).

With the same transformation (B.1), eq. (3.12) becomes

x(1 − x)
d2f

dx2
+

(

7

4
− 9

4
x

)

df

dx
− 1

4
f = 0. (B.8)

We have

η̄2(σ) = 2cn2σF

(

1,
1

4
;
7

4
; cn4σ

)

(B.9)

and ξ̄2(σ) = η̄2(−σ). It follows from (B.4)–(B.6) that the Wronskian

W [η̄2, ξ̄2] = −2 lim
ǫ→0+

η̄2(−ǫ)η̄′2(−ǫ)

= − 32

7
√

2

Γ
(

7
4

)

Γ
(

1
2

)

Γ
(

3
4

)

Γ
(

3
2

)

Γ
(

11
4

)

Γ
(

1
2

)

Γ(2)Γ
(

5
4

)

= − 36π
3
2

Γ2
(

1
4

) (B.10)

and (3.36) is obtained as −W [η̄2, ξ̄2]/3. Using the series representation of the hypergeo-

metric function, we find that

η̄1 =
3

2
x−

1
4

∫ x

0

dx′x′−
1
4√

1 − x′
=

3
√

2

cnσ

∫ σ

−K
dσ′cn2σ′. (B.11)

But we fail to find a similar expression for η̄2(σ).

As to C̄3(0), we notice that the solution of the 1st order differential equation

√
2cnσ

dψ

dσ
+ ψ = 0 (B.12)

also solves eq. (3.13) with the upper sign. The eq. (B.12) can be solved readily and we

obtain

ψ(σ) = B

√√
2dnσ − snσ√
2dnσ + snσ

(B.13)

with B a constant, where we have used the indefinite integral

∫

dσ
1

cnσ
= − 1√

2
ln

√
2dnσ − snσ√
2dnσ + snσ

+ const. (B.14)
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as can be verified by taking derivatives of both sides. Setting the constant B = 2, we find

that the function ψ(σ) satisfies the boundary condition of ξ̄+(σ) at σ = K and therefore

ξ̄+(σ) = ψ(σ). As σ → −K,

ξ̄+(σ) =
4

σ +K
+ . . . (B.15)

and we end up with C̄3(0) = 4.

C The soluble model

In this appendix, we present the details of the soluble model which is introduced to check

our numerical algorithm. The model is largely motivated by the work in [30]. We shall

use the same symbols (η, ξ) for the solutions of the counterparts of the differential equa-

tions (3.11), (3.12) and (3.13). Because the scalar curvature of the metric (4.16) is R = −2,

the counterparts of (3.11) and (3.12) are the same. Consequently, D1(ω) = D2(ω) and

(η1, ξ1) = (η2, ξ2) in this case. The counterpart of the eq. (3.11) or (3.12) reads,

− d2φ

dσ2
+

(

ω2 +
2

cos2 σ

)

φ = 0 (C.1)

and has the same set of indexes at the regular points σ = ±π
2 as that of (3.11). The

symmetry property (3.18), the relation (3.24) and the formula (4.8) remain valid. The

solution η1(σ), specified by the boundary condition (3.14) with K replaced by π
2 is

η1(σ) = (ω cos σ)2F

(

1 + i
ω

2
, 1 − i

ω

2
;
5

2
; cos2 σ

)

(C.2)

and ξ1(σ) = η1(−σ). It follows from (4.8) and the formula (B.4)–(B.6) for hypergeometric

functions that

W [η1, ξ1] = −2 lim
ǫ→0+

η1(−ǫ)η′1(−ǫ)

= −ω
4(ω2 + 4)

5

Γ
(

5
2

)

Γ
(

7
2

)

Γ2
(

1
2

)

Γ
(

3+iω
2

)

Γ
(

2 + iω2
)

Γ
(

3−iω
2

)

Γ
(

2 − iω2
) (C.3)

= − 9ω3

ω2 + 1
sinhπω (C.4)

Divided by −3ω we end up with (4.17). The nonzero component of the spin connection

corresponding to the metric (4.16) is ω01
τ = tan σ and the counterpart of eq. (3.13) with

the upper sign reads
d2φ

dσ2
−
(

ω2 +
1

1 + sinσ

)

φ = 0. (C.5)

The equation (C.5) can be reduced to a hypergeometric equation and the solutions satis-

fying the boundary conditions (3.14), (3.16) and (3.17) (with K replaced by π
2 ) read

η+ = 2ω2(1 + sinσ)F

(

1 + iω, 1 − iω;
5

2
;
1 + sinσ

2

)

(C.6)
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and

ξ+ =
1√
2

(1 + sinσ)
√

1 − sinσF

(

3

2
+ iω,

3

2
− iω;

3

2
;
1 − sinσ

2

)

. (C.7)

Their Wronskian

W [η+, ξ+] = η+

(π

2

)

ξ′+

(π

2

)

= −4ω2F

(

1 + iω, 1 − iω;
5

2
; 1

)

= −4ω2 Γ
(

5
2

)

Γ
(

1
2

)

Γ
(

3
2 + iω

)

Γ
(

3
2 − iω

) =
3ω2

ω2 + 1
4

coshπω. (C.8)

The eq. (4.18) follows then from (C.8) and (3.25).
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